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Abstract—In this paper a detailed insight into implementation
of selected control theory algorithms is shown. These algorithms
have been successively implemented using an object oriented
programming language while considering a computation cost
optimization and preserving the overall code readability. The
resulting product, a form of a numerical computing library,
can be afterwards found suitable for various control oriented
engineering applications, especially those having limited hard-
ware resources (e.g. embedded systems). Finally, the whole im-
plemented framework was deployed in a STM32 micro-controller
based and real-time application designed for temperature control
of a physical system.

Index Terms—numerical computing, real-time control, system
identification, control design, implementation, embedded systems,
object-oriented programming

I. INTRODUCTION

The field of control theory was formed by a significant

research in the last century while resulting into huge and con-

tinuous progress in all domains of engineering and technology.

Despite this fact, practical applications of many algorithms

were infeasible for the insufficient computers performance.

Nowadays, the embedded systems, primarily based on single

chip programmable micro-controllers, are an ideal platform for

a real-time operable control application deployment.

The aim of this paper is to create an open-source C++

numerical computing library focused on implementing chosen

algorithms from the control system theory. Our product is

meant to be available for wide research and development

community, so anybody is free to share and use it in whatever

project aimed on a control theory. Implemented functionality

is intended to be verified being deployed in the real-system

control application. The STM32 micro-controllers family in

combination with FreeRTOS operating system has been chosen

as the target platform for this purpose.

Few open-source numerical computation libraries focused

on the domain of control engineering have been already

implemented as reported in the literature.

The most interesting one, matching our scope closely, is

The Control Toolbox developed by ETH Agile & Dexterous

Robotics Lab. This C++ library contains tools to design and

evaluate controllers, model dynamic systems and solve optimal

control problems yet is primarily aimed on robotics. [1]

Other numerical computing libraries are also available, such

as popular GNU Scientific Library. The GSL is well maintained

C language library suitable for general purpose engineering

and scientific problems namely: solving systems of linear

equations, eigenvalues problems or even least squares fitting.

This library also contains implementation of ODE solvers, yet

it lacks any other content related to the control theory. [2]

The SLICOT - A Subroutine Library in Systems and Control

is indeed a complex library that consists of many computa-

tional routines in various sub-domains of the control engineer-

ing. However it is written in the outdated Fortran language and

the library itself is not even maintained any more. [3]

The last but not least is the proprietary software like

Matlab and its code-generator. Using Matlab might be suitable

for rapid algorithms development, however due to its closed

source character, the final deployment in a project is kind a

problematic. Auto-generated code also usually lacks of clean-

written application interface, therefore it might be cumber-

some to adopt and embed this code into a complex software

project. However, the most significant disadvantage of the

automatic code-generation is poor readability, what may result

into confusion during the debugging process. Optimization of

computation complexity in the case of auto-generated code is

also questionable.

II. DISCRETE-TIME SYSTEMS

The cybernetics established the concept of systems and

signals in order to describe real world processes from the

engineer’s point of view. This idea is actually quite suitable

for a software implementation using modern programming

languages, especially those object-oriented. [4]

Considering this, the abstraction of a system can be rep-

resented as an object in the source code. This system-object

analogy may significantly aid the implementation process and

improve overall code readability.

Discrete-time systems are an essentials of numeric control

since computers operate at finite frequency and the source

code is executed sequentially. For this type of systems, time

is being assumed discrete to certain sampling period Ts.

Whereas continuous system dynamics is usually defined

by differential equations, for discrete-time systems differ-

ence equations have been established. The so called “update

function” implements the system specific difference equation

and hence explicitly defines its dynamic properties. Concern-

ing implementation, the generic discrete-time system class

comprises the update function in a form of virtual member

function. The final implementation of this function is hereby

left to the derived class.
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A. System model

The discrete transfer function model represents a linear

single input - single output dynamic system. Concerning the

field of digital signal processing, a discrete transfer function

is considered to be a digital filter there.

Let the nB and nA denote the numerator and the denomi-

nator polynomials degree. Then the fully expanded form will

be:
y(z)

u(z)
=

B(z)

A(z)
=

b1z
−1 . . .+ bnB

z−nB

1 + a1z−1 . . .+ anA
z−nA

(1)

Difference equation corresponding to transfer function (1)

is in the form:

y(k) =

nB∑
i=1

biu(k−i) −

nA∑
i=1

aiy(k−i) (2)

The numeric realization of the equation (2) is also called

the direct form I abbr. DF-I [5]. In order to apply the DF-I

algorithm, the filter structure has to comprise separate memory

vector for both input and output signal.

class TransferFunction: public DiscreteSystemSISO {

public:

TransferFunction(size_t nb, size_t na);

void update(const Vector<Signal>&, Vector<Signal>&);

private:

Vector numerator_coeffs;

Vector denominator_coeffs;

VectorStates input_states;

VectorStates output_states;

};

For the DF-I there are twice as many delays as necessary.

As a result, the DF-I structure is not canonical with respect

to delay. The update function is implemented in terms of the

equation (2).

void TransferFunction::update(

const Vector<Signal>& input,Vector<Signal>& output)

{

real_t y = 0;

const real_t u = input.at(0);

input_states.at() = u;

for (uint i = 0; i < numerator_coeffs.get_length(); i++)

{ y += numerator_coeffs[i] * input_states[i]; }

++input_states;

size_t order = get_order();

for (uint i = 0; i < order; i++)

{ y += -denominator_coeffs[i] * output_states[i]; }

output_states.at() = y;

++output_states;

output.at(0) = y;

}

B. Circular buffer abstraction

Transfer function like systems generally represent a canon-

ical form of a state space representation. It means, that the

equivalent state vector contains the past states of the output

signal y. Therefore for each discrete step, the states should

get one sample time older, e.g. value y(k−1) becomes y(k−2)

and so on. This would normally require a computationally

expensive shifting and overwriting of all last vector elements.

In time critical applications, especially while using limited

resources, this is unacceptable. In order to deal with this

problem, the circular buffer abstraction has been proposed to

be used.

The circular buffer can be seen as a generic vector of the

length N extended by an indexing variable i of integer type.

This variable always points to the position of the latest sample.

Only the indexing variable is incremented during the states

update process rather than shifting all elements of the vector.

After reaching the end of the vector, the indexing variable

overflows, so the buffer works in circular mode. Equivalent

diagram is illustrated in the figure 1.

Fig. 1: Circular buffer diagram

Circular buffer was implemented as the C++ class:

class VectorStates: public Vector {

public:

void operator++() { i++; i %= length; }

real_t& at(uint k) { return Vector::at((k+i+1)%length); }

real_t& at() { return Vector::at(i); }

private:

uint i = 0;

};

The update function was implemented as the pre-increment

operator operator++() . The indexed sample access interface

implements the virtual function at of the base class Vector.

C. Controller structure

We consider the general controller structure with three

degrees of freedom expressed in the linear polynomial form:

R(z)u(k) = T (z)w(k) − S(z)y(k) (4)

Where R(z), S(z) and T (z) are polynomials defined as:

R(z) = 1 + r1z
−1 . . .+ rnR

z−nR

S(z) = s0 + s1z
−1 . . .+ snS

z−nS

T (z) = t0 + t1z
−1 . . .+ tnT

z−nT

(5)

Compared to the traditional PID controller, separate setpoint

w and feedback y signals are provided, instead of single

error signal e. This allows to tune dynamic behaviour of the

closed loop using an appropriate parameter synthesis method

(e.g. pole placement control, model predictive control, linear

qudratic control).

The controller structure (4) consists of three main sections:

• R - controller output IIR component

• S - feedback FIR component

• T - feed-forward FIR component

The software implementation is similar to a discrete transfer

function yet one additional FIR component has to be used:

class RST_Controller: public DiscreteSystemMIMO {

public:

RST_Controller(size_t nR, size_t nS, size_t nT);

Vector R_coeffs;

Vector S_coeffs;

Vector T_coeffs;

void update(const Vector<Signal>&,Vector<Signal>&);

private:

VectorStates u_states;

VectorStates y_states;

VectorStates w_states;

};
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a0 0 . . . 0 0 0 . . . 0

a1 a0 . . . 0 b1 0 . . . 0

a2 a1 . . . 0 b2 b1 . . . 0

...
...

...
...

...
...

...
...

anA
anA−1 . . . a0 bnB

bnB−1 . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . anA
0 0 . . . bnB

⎞
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⎛
⎜⎜⎜⎜⎜⎜⎝

r0
...

rnR

s0
...

snS

⎞
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=

⎛
⎜⎜⎜⎜⎜⎝

p0
p1
p2
p3
...

pnP

⎞
⎟⎟⎟⎟⎟⎠

(3)

The implemented class contains vectors of R, S and T

polynomials coefficients and also the memory vectors (as

defined in section II-B) for the corresponding signals u, y

and w.

In almost every practical control application, the controller

output signal u is constrained to the certain interval. For exam-

ple, typical digital to analog converters or PWM modulators

operate within limited range of the output signal.

Because of this, the update function of the controller in-

cludes saturation operation in order to constrain the manip-

ulated variable by the numeric way. If the autoregressive R

component of the controller is internally aware of this, then

the “windup” like effect won’t be present.

The update function of polynomial controller is imple-

mented according to the equation (4) transformed into the

following difference equation form:

u(k) =

nT∑
i=0

tiw(k−i) −

nS∑
i=0

siy(k−i) −

nR∑
i=1

riu(k−i) (6)

void RST_Controller::update(

const Vector<Signal>& input, Vector<Signal>& output)

{

w_states.at() = input.at(0);

real_t u = 0;

for (uint i = 0; i < T_coeffs.get_length(); i++) {

u += T_coeffs[i] * w_states[i];

}

++w_states;

y_states.at() = input.at(1);

for (uint i = 0; i < S_coeffs.get_length(); i++) {

u += -S_coeffs[i] * y_states[i];

}

++y_states;

for (uint i = 0; i < R_coeffs.get_length() - 1; i++) {

u += -R_coeffs[i] * u_states[i];

}

u = saturate(u);

u_states.at() = u;

++u_states;

output.at(0) = u;

}

This can be also seen as the two input modification of a

DF-I type discrete filter as defined in the section II-A.

III. CONTROL DESIGN

The general aim of the controller synthesis procedure is

to achieve the desired dynamic behaviour of the closed con-

trol loop while implicitly providing its stability. The pole-

placement method has been chosen for this purpose and hence

is implemented further in this paper.

This method proposes to force the dynamics of the

controller-plant closed loop via placing roots of its character-

istic polynomial. The pole-placement method also implicitly

provides the closed loop stability, but only if the desired

polynomial P stability condition is met.

We assume the controlled system model in the form (1).

The closed loop transfer function with the controller (4) has

the following form:

y(z)

w(z)
=

B(z)T (z)

A(z)R(z) +B(z)S(z)
(7)

Let the desired closed loop characteristic polynomial to be

P (z). Applying the pole-placement method we demand the

following equality:

A(z)R(z) +B(z)S(z) = P (z) (8)

According to the convolution theorem for polynomial mul-

tiplication, the following dimensions conditions must be met:

nP = nB + nA − 1 = nR + nS + 1
nR = nB − 1 nS = nA − 1

(9)

The diophantine equation (8) can be written as an equivalent

system of linear equations (3) using convolution matrices for

B(z) and A(z) polynomials.

Then the closed loop transfer function (7) can be rewritten:

y(z)

w(z)
=

B(z)T (z)

P (z)
(10)

The T polynomial is usually designed as a zero degree (t0
only) to assure the unit static gain of closed loop transfer

function (10):

T (z) =

∑
pi∑
bi

(11)

The above approach was implemented into our library using

the matrix LU decomposition subroutine.

void RST_poleplace(

const Vector& A, const Vector& B,const Vector& P,

Vector& R, Vector& S, Vector& T)

{

uint R_length = B.length-1;

uint S_length = A.length-1;

Matrix M(P.length, P.length);

Matrix M_submat_A(M,P.length,R_length,0,0);

Matrix M_submat_B(M,P.length,S_length,0,R_length);

convMat(A,M_submat_A,R_length);

convMat(B,M_submat_B,S_length);

Vector X=M.solve(P);

R = Vector(X, R_length,0);

S = Vector(X,S_length, R_length);

T[0] = P.sum() / B.sum();

}
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IV. SYSTEM IDENTIFICATION

For a control synthesis method to be correctly applied, the

parameters of the controlled system have to be known or at

least to be estimated. Therefore the recursive least-squares

method (abbr. RLS) [6] is implemented into our library.

We assume the controlled system in the form of an ARX

model.

A(z−1)y(k) = B(z−1)u(k) + ε(k) (12)

Where ε stands for the exogenous random disturbance signal.

The model output y(k) can be expressed in vector form:

y(k) = hT

(k)θ + ε(k) (13)

θT = [b1, b2 . . . bnB
, a1, a2 . . . anA

] (14)

hT

(k) =
[
u(k−1), . . . u(k−nB),−y(k−1), . . .− y(k−nA)

]
(15)

Regression vector h(k) has to be updated (iterated) for each

sample time. The slightly modified circular buffer, proposed

in the section II-B, can be conveniently exploited for this

purpose. The implementation of the regression vector leads

to the following class:

class VectorARXRegressor: public Vector {

public:

void update(real_t, real_t);

real_t& at(uint);

private:

VectorStates u_states;

VectorStates y_states;

};

The update function implementation iterates circular buffer

for the input and the output signal separately.

void VectorARXRegressor::update(real_t u, real_t y) {

++u_states; u_states.at() = u;

++y_states; y_states.at() = -y;

}

The indexed element access function implements the virtual

function at of the base class Vector.

real_t& VectorARXRegressor::at(uint n)

if(n < u_states.get_length())

return u_states[n];

else if(n < y_states.get_length() + u_states.get_length())

return y_states[n - u_states.get_length()];

}

Finally the RLS algorithm equations are given as follows:

Y(k+1) =
P(k)h(k+1)

λ+ hT

(k+1)PNh(k+1)

(16)

P(k+1) =
1

λ

(
I − Y(k+1)h

T

(k+1)

)
P(k) (17)

ŷ(k+1) = hT

(k+1)θ̂(k) (18)

e(k+1) = y(k+1) − ŷ(k+1) (19)

θ̂(k+1) = θ̂(k) + e(k+1)Y(k+1) (20)

Where λ denotes forgetting factor and P is the covariance

matrix.

For the RLS method to evaluate, only basic matrix opera-

tions are required to be implemented. In this paper we imple-

mented the above algorithm in the C ++ language exclusively

using the original matrix and vector interface.

class RLS {

public:

RLS(size_t n_params, real_t P0);

real_t estimate(const Vector& hk_1, real_t yk_1);

private:

Matrix Pk_0;

Matrix Pk_1;

Matrix YhT;

Vector theta;

Vector Y;

real_t lambda;

};

The above RLS class stores some of the matrices and the

vectors objects as member ones, since their dynamic allocation

in every iteration would be ineffective. However this allocation

is performed only during the class construction because all

the objects dimensions are fixed for the certain number of

estimated parameters.

real_t RLS::estimate(const Vector& hk_1, real_t yk_1)

{

Pk_0 = Pk_1;

error = yk_1 - hk_1.dot_product(theta);

Pk_0.multiply(hk_1, Y);

Y/=(hk_1.dot_product(Y) + lambda);

YhT.multiplyTvector(Y, hk_1);

YhT.diagonal() -= 1.0;

YhT/=-lambda;

Pk_1.multiply(YhT, Pk_0);

Y*=error;

theta+=Y;

return error;

}

In order to optimize algorithm complexity and memory re-

quirements, some of equations (16) - (20) were slightly

reshaped in the way of minimizing the overall number of

performed operations as possible.

V. REAL-TIME APPLICATION

All the above mentioned algorithms have been applied in the

real-system control application. Such a practical demonstra-

tion, among other things, demands real-time operation support,

so using dedicated operating system is necessary. Namely

the FreeRTOS minimalistic real time kernel operating system

suitable for embedded systems was chosen for this purpose.

The FreeRTOS contains tasks scheduler for preemptive multi-

tasking and includes basic interface for periodic control loops

execution as well.

The controlled system is a simple thermal system consisting

of a resistor being heated by the input electric power. Temper-

ature T (t) of the system, representing the controlled signal,

has been sensed using NTC thermistor and then sampled by

on-chip analog-digital converter.

However, the system input voltage signal, representing the

manipulated variable, is not continuous in time since the pulse

width modulation has been used. This modification leads to

proportional relation of manipulated variable (aka. PWM duty

d(t)) to the input electric power.

Even if this signal is dis-continuous in reality, yet for a

small enough PWM period, relatively to the time constant of

the system, it can be further assumed continuous. The duty

signal d(t) [unitless] lies within the interval 〈0, 1〉 therefore

the controller output has to be saturated.
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Since the system operates in real conditions, a non-zero

initial value of temperature is always present. Also the steady

state of the system is affected by ambient temperature Tamb(t).
For the identification and control purposes the feedback signal

has to be modified. Signal TΔ(t) has to be relative to the

ambient temperature.

TΔ(t) = T (t)− Tamb(t) (21)

The ambient temperature Tamb can be measured by an addi-

tional sensor. In order to avoid the necessity of another sensor,

the Tamb can be determined as system steady state (for d = 0).

A. Identification

For the numerical control implementation, the parameters

of ARX model have been estimated using the RLS method.

The recursive least squares method can fully supply the

functionality of general lest squares, while the forgetting factor

has to be set as λ = 1 (no forgetting). Even this recursive

version is generally an on-line method, we applied it as off-

line for memory requirements reduction.

A step-like multilevel signal has been applied as the exciting

signal for the identification procedure. The sampling period

has been set to Ts = 3 s. ARX model orders were determined

by a qualified guess as nB = 2 and nA = 2 respectively.

The identification is then performed within the loop:

ADC_input input(&hadc1, ADC1, ADC_channels, 12, 3.3);

PWM_output output(&htim3, TIM3, PWM_channels, 5000);

NTC_thermistor thermistor(...);

const real_t Ts = 3.0;

real_t T_amb_est = thermistor.U_to_T(input.read());;

size_t nb = 2; size_t na = 2;

VectorARXRegressor h(nb, na);

RecursiveLeastSquares RLS(nb + na, 1e6);

Vector B(nb + 1); Vector A(na + 1);

VectorDiscreteParameters theta(B, A);

real_t ident_data[] = {0.2,0.5,0.0,0.75,1.0,0.0};

SignalSampled ident_signal(6,30,ident_data);

while (1) {

try {

input.sample();

real_t T = thermistor.U_to_T(input.read());

real_t u = ident_signal.at(i * Ts);

RLS.estimate(h, T - T_amb_est);

h.update(u, T - T_amb_est);

output.setDuty(u, 0);

vTaskDelayUntil(&xLastWakeTime, Ts);

i++;

}

catch (...)

{ break; }

}

The ambient temperature has been estimated as Tamb =
25.3 ◦C and has been considered to be constant during iden-

tification and control experiments.

The resulting transfer function is as follows:

F (z) =
TΔ(z)

d(z)
=

1.047z−1 + 0.049z−2

1− 1.451z−1 + 0.460z−2
(22)

Figure 2a shows the measured system response T together

with the input signal u. The estimated output of the model

T̂ using single step ahead prediction T̂ = hT θ + Tamb

and also the simulated model output Tsim using the discrete

transfer function evaluation are plotted in the figure in order

to validate the model. Both estimated T̂ and simulated Tsim

output signals of the model fit the measured temperature data

sufficiently, so the estimated model can be considered valid.

B. Control

Let the continuous-time desired characteristic polynomial

P (s) represent an aperiodic transient response with the mul-

tiple time constant Tc. For the final deployment the time

constant was chosen as Tc = 2.75 s.

P (s) =

nP∏
(Tcs+ 1) (23)

This desired polynomial P (s) needs to be transformed to

its discrete equivalent first. The poles-zeros match method can

provide exact (not just approximative) transformation of poles

and zeros between continuous and discrete time domains while

preserving full dynamic and stability properties.

Consequently, the discrete desired polynomial P (z) can be

written as product:

P (z) =

nP∏(
z − e−

Ts

Tc

)
(24)

Following the control design procedure described in section

III the resulting linear polynomial controller (4) has been

obtained.

real_t T_c = 2.75;

Polynom P=create_aperiodic_polynom(nb + na - 1, T_c, Ts);

Discrete_RST_Controller controller(nb - 1, na - 1, 0);

controller.set_saturation(1.0, 0.0);

RST_poleplace(

A, B, P,

controller.R,controller.S_coeffs,controller.T_coeffs);

Finally, the control can be applied in a periodic loop using

sampled temperature signal.

while (1) {

input.sample();

real_t T = thermistor.U_to_T(input.read());

controller.input(0) = T_ref - T_amb_est;

controller.input(1) = T - T_amb_est;

controller.update();

real_t u = controller.output(0);

output.setDuty(u);

vTaskDelayUntil(&xLastWakeTime, Ts);

}

For the hardware realisation of control system see figures 3

and 4. In details, the STM32F446RE (180 MHz, 512 KB Flash,

128 KB SRAM ) micro-controller embedded in the Nucleo

evaluation board was used.

C. Results

Figure 2b shows the closed loop system response T together

with the set-point signal Tw and corresponding controller

output signal u. The desired closed loop response Tdes is also

depicted in order to validate the control performances. It can be

seen that the controlled temperature signal T matches closely

the desired dynamics Tdes. Slight differences occur in case of

manipulated variable saturation, yet in such a case no windup

effect has raised up.
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(a) Thermal system identification (b) Thermal system control

Fig. 2: Thermal system measured identification and control responses

VI. CONCLUSION

An optimized software implementation of the specific al-

gorithms from the control theory domain has been shown

in this paper. The library was implemented using the C++

programming language while taking into account possible

limited hardware resources.

The linear polynomial controller structure was proposed as

an versatile discrete control algorithm, moreover it’s suitable

for effective software implementation. The pole-placement

method has shown to be an appropriate controller synthesis

method, hence was implemented using the convolution matrix

subroutine and the LU decomposition subroutine. For the

system identification purposes, the recursive least squares

method algorithm was effectively implemented and further

applied for the ARX model parameters estimate.

The implemented framework, comprising all the men-

tioned algorithms, was successfully verified in the practical

real-time temperature control application. The STM32 fam-

ily micro-controller running the FreeRTOS operating system

was exploited for this purpose. Created software library has

been published as open-source project and can be found at:

https://github.com/dodekm/System-control-library.
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